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Evolving network
models



EVOLVING NETWORK MODELS

The BA model is only a minimal model.
Makes the simplest assumptions:

* linear growth <k> =2m
* linear preferential attachment I1(k,) < k,

Does not capture
variations in the shape of the degree distribution
variations in the degree exponent
the size-independent clustering coefficient

Hypothesis:
The BA model can be adapted to describe most features of real networks.

We need to incorporate mechanisms that are known to take place in real
networks: addition of links without new nodes, link rewiring, link removal,
node removal, constraints or optimization



BA ALGORITHM WITH DIRECTED EDGES
(the simplest way to change the degree exponent)

44y 4p

6k 1 I_ Undirected BA network: Z =21
ot Z k. | Directed BA network: ijj =1
k(£) = m P(k)~k7
t, in
B=1: dynamical exponent vi,=2: degree exponent; P(k,)=0(K,,m)

Undirected BA: B=1/2; y=3



EXTENDED MODEL: Other ways to change the exponent

Extended Model

 prob. p : internal links
* prob. g : link deletion
* prob. 1-p-q : add node

P(k) ~ (k+x(p,q,m))1Pam

vy € [1,)

power-law
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EXTENDED MODEL: Small-k cutoff

P(k) ~ (k+x(p,g,m))*®Pam v e [1,00) |Extended Model

* prob. p : internal links
* prob. g : link deletion
* prob. 1-p-q : add node

- Predicts a small-k cutoff

—>a correct model should predict all aspects of the
degree distribution, not only the degree exponent.
—~>Degree exponent is a continuous function of p,q, m
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NONLINEAR PREFERENTIAL ATTACHMENT: MORE MODELS

* Non-linear preferential attachment:
ka

S

I(k) =

— P(k) does not follow a power law for a1

= o<1 : stretch-exponential P(k )= exp(— ( k/ k, )ﬂ)

= a>1 : no-scaling (a>2 : “gelation”)

P. Krapivsky, S. Redner, F. Leyvraz, Phys. Reuv. Lett. 85, 4629 (2000)



INITIAL ATTRACTIVENESS

BA model: k=0 nodes cannot aquire links, as (k=0)=0
(the probability that a new node will attach to it is zero)

II(k)= A+ k%, a <1

A - initial attractiveness

Initial attractiveness shifts the degree exponent:

A
},in=2+
m

Note: the parameter A can be measured from real data, being the rate at which
k=0 nodes acquire links, i.e. (k=0)=A

Dorogovtsev, Mendes, Samukhin, Phys. Rev. Lett. 85, 4633 (2000)



GROWTH CONSTRAINTS AND AGING CAUSE CUTOFFS

* Finite lifetime to acquire new edges

L. A. N. Amaral et al., PNAS 97, 11149 (2000)

Cumulative distribution

» Gradual aging: II(k;))ock;(t—1,)"
y increases with v

S. N. Dorogovtsev and J. F. F. Mendes, Phys. Rev. E 62, 1842 (2000)

o No aging \1
L < Slow aging “e!

(a)

Fast aging |

L1l L Ll L Ll L R
10 100 1000 10000
Number of edges



THE LAST PROBLEM: HIGH, SYSTEM-SIZE INDEPENDENT C(N)

Wiood webs Pathlenght &

H-neural network

Degree Distr.
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Strogatz it ™ Tog (k) C ~ const p
Barabasi- _ InN c (InN)? P(k) ~ k"
Albert Inln N N




A MODEL WITH HIGH CLUSTERING COEFFICIENT

. Each node of the network can be either active or inactive.

There are m active nodes in the network in any moment.

Start with m active, completely connected nodes.

Each timestep add a new node (active) that connects to m active nodes.
Deactivate one active node with probability: P, (k) oc (a + k,- )‘1

wnN -~

1.00

II(k)~a+ k
-l P(k) ~ k—2—a/m

080

clustering coefficient G

D?D L L L1 saaal L M A A | 1 PR T T N B A1 | 1 PR T N B N I 1
10" 10 10% ek 10

network size M

K. Klemm and V. Eguiluz, Phys. Rev. E 65, 036123 (2002)



Linear growth, linear pref. attachment

Monlinear preferential attachment
TI(k,)~ k2

Asymptotically linear pref. attachment
I{k;)—ak; as k;—w«=

Initial attractiveness
Ik y—A+k;
Accelerating growth {k}—¢®

constant initial attractiveness

Internal edges with probab. p

Rewiring of edges with probab. g

¢ internal edges
or removal of ¢ edges

Gradual aging
Ik~ kile—r)~F
Multiplicative node fitness

IT;~— .,

Edge inheritance

Copying with probab. p
Redirection with probab. »
Walking with probab. p
Attaching to edges

p directed internal edges
Tk, ke o (™ + A (T + )
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Section 11: Summary

Number of Nodes
N=t

Number of Links
N=mt

Average Degree
(k) =2m

Degree Dynamics
k(t)=m (t/t)°

Dynamical Exponent
B=1/2

Degree Distribution

pk“‘ k—y

Degree Exponent
y=3

Average Distance
(d) ~ logN/log logN

Clustering Coefficient The network grows, but the degree distribution is stationary.
(C) ~ (InN)*/N



Section 11: Summary

Number of Nodes
N=t

Number of Links
N=mt

Average Degree
(k) =2m

Degree Dynamics

kt) =m (/8 Consequently, the modeling philosophy behind the model is simple: to un-

Dynamical Exponent derstand the topology of a complex system, we need to describe how it came
B=1/2 into being.

Degree Distribution

pk - k—y

Degree Exponent
y=3

Average Distance
(d) ~ logN/log logN

Clustering Coefficient The network grows, but the degree distribution is stationary.
(C) ~ (InN)*/N



Section 11: Summary

Number of Nodes e The model predicts y=3 while the degree exponent of real networks
N=t varies between 2 and 5 (Table 4.2).
Number of Links

e Many networks, like the WWW or citation networks, are directed,

N=mt
while the model generates undirected networks.

Average Degree
k) =2m e Many processes observed in networks, from linking to already exist-

ing nodes to the disappearance of links and nodes, are absent from
Degree Dynamics the model.
k(t) =m (t/t)F

e The model does not allow us to distinguish between nodes based on
Dynamical Exponent

B=1/2 some intrinsic characteristics, like the novelty of a research paper or

the utility of a webpage.
Degree Distribution
P~ k¥ e While the Barabasi-Albert model is occasionally used as a model of the
Internet or the cell, in reality it is not designed to capture the details of
Deg;ee LT any particular real network. It is a minimal, proof of principle model
v =

whose main purpose is to capture the basic mechanisms responsible
) for the emergence of the scale-free property. Therefore, if we want to
Average Distance . X
(@ - logN/log logN understand the evolution of systems like the Internet, the cell or the

WWW, we need to incorporate the important details that contribute
Clustering Coefficient to the time evolution of these systems, like the directed nature of the

(C) ~ (InN)*/N WWW, the possibility of internal links and node and link removal.



LESSONS LEARNED: evolving network models

1. There is no universal exponent characterizing all networks.

2. Growth and preferential attachment are responsible for the emergence
of the scale-free property.
3. The origins of the preferential attachment is system-dependent.
4. Modeling real networks:
. identify the microscopic processes that take place in the
system
. measure their frequency from real data
. develop dynamical models that capture these
processes.

5. If the model is correct, it should correctly predict not only the degree
exponent, but both small and large k-cutoffs.



LESSONS LEARNED: evolving network models

Philosophical change in network modeling:

ER, WS models are static models — the role of the network modeler it to
cleverly place the links between a fixed number of nodes to that the
network topology mimic the networks seen in real systems.

BA and evolving network models are dynamical models: they aim to
reproduce how the network was built and evolved.

Thus their goal is to capture the network dynamics, not the structure.
—> as a byproduct, you get the topology correctly
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DEGREE CORRELATIONS IN NETWORKS

Assortative: Neutral: Disassortative:
hubs show a tendency to nodes connect to each Hubs tend to avoid
link to each other. other with the expected linking to each other.

random probabilities.

Quantifying degree correlations (three approaches):
—> full statistical description (Maslov and Sneppen, Science 2001)

—> degree correlation function (Pastor Satorras and Vespignani, PRL 2001)
—> correlation coefficient (Newman, PRL 2002)




STATISTICAL DESCRIPTION

ej: probability to find a node with degree j and degree k at the two ends of a randomly
selected edge
zeﬂc =1 Zejk =4,
ik i

q,: the probability to have a degree k node at the end of a link.

) kpk Probability to find a node at the end of a link is biased towards the more connected
Where: qk — T\ nodes, i.e. q,=Ckp, where C is a normalization constant . After normalization we
<k> find C=1/<k>, or q,=kp,/<k>
If the network has no Deviations from this prediction are a
degree correlations: € jk q jq]( signature of degree correlation.

M. E. J. Newman, Phys. Rev. Lett. 89, 208701 (2002)



EXAMPLE: e, FOR A SCALE-FREE NETWORK

Assortative:
More strength in
the diagonal,
hubs tend to link
to each other.

Neutral

Disassortative:
Hubs tend to
connect to small
nodes.

Each matrix is the average of a 100 independent scale-free networks,
generated using the static model with N=104, y=2.5 and <k>=3.

k
10 15 20 25 30 35 40




EXAMPLE: e, FOR A SCALE-FREE NETWORK

Perfectly assortative a?;: ;tt?g: gt.h in
network: the diagonal,
hubs tend to link
€ix=0xOjk to each other.
Disassortative: [ 0009
Perfectly Hubs tend to 10 o.008
disassortative connect to small 15 0007
network: nodes. o -

35

40

Each matrix is the average of a 100 independent scale-free networks,
generated using the static model with N=104, y=2.5 and <k>=3.




REAL-WORLD EXAMPLES

Astrophysics co-authorship network Yeast PPI
k k
50 100 150 0 .- 300 — M)%&O_S 10 20 30 40 50 001
19 5 A
50 0.009
18 10 10.008
100 |7 15
10.007
20
4 6 4
150 § 25 0.006
~ oo B 15 e. - 10.005 € jx
200 ‘?,k 30 J
14 35 10.004
250 13 40 10.003
45 |
300 0.002
50

0.001

350 55

3
5 10 15 20 25 30 35 40

Assortative: o Disassortative: -
More strength in o Hubs tend to o
the diagonal, o connect to small o
hubs tend to o nodes. o
link to each

0.001 0.001

other.



PROBLEM WITH THE FULL STATISTICAL DESCRIPTION

(1) Difficult to extract (2) Based on e, and hence requires a large
information from a visual number of elements to inspect:
inspection of a matrix.

k
50 100 150 200 250 300 350  x10°

| Nr. of
" kmax (kmax o 1) 1—k independent
" — LT Rk elements
_ :5 / p) \
s Undirected network: B B
Iz Krmax X Kmax matrix Zk:eﬂc =1 _ %,:nejk — 4
! J F =Lk
’ Constraints

We need to find a way to reduce the information contained in ey,

M. E. J. Newman, Phys. Rev. Lett. 89, 208701 (2002)



Average next neighbor degree

K.nna (K): @average degree of the first
neighbors of nodes with degree k.

Zk'ekk'
g (k) = D_K'P(K' | ) = k'ze

kl’

_4+3+3+1
4

No degree Zk,ekk' Zk,qqu <k 2>

. , , k' p(k')
correlations: K g (K) = kz:ekk' =% g, _quk Zk’ <k> (k)

If there are no degree correlations, k,,,,(k) is independent of k.

R. Pastor-Satorras, A. Vazquez, A. Vespignani, Phys. Rev. E 65, 066130 (2001)



k,...(k) FOR REAL NETWORKS

10
100 r
/\C Ac
v v
exponent: -.27+-0.03
10 N Ll N MR | N PR S S S 1 " N N PR S | N N L PR S S
1 10 100 1000 1 10 100
Kk k
Astrophysics co-authorship network Yeast PPI

Assortative Disassortative



Average next neighbor degree

K..nq(k): average degree of the first
neighbors of nodes with degree k.

Zkannd (k) kNp, = Zkz' Np, B
k k

(Ko () = (K?)

-1 independent

constraint: elements

k..nqa(k) is a k-dependent function, hence it has much fewer parameters,

and it is easier to interpret/read.

R. Pastor-Satorras, A. Vazquez, A. Vespignani, Phys. Rev. E 65, 066130 (2001)



PEARSON CORRELATION

If there are degree correlations, e will differ from q;q,. The magnitude of the correlation is
captured by <jk>-<j><k> difference, which is:

ij(ejk _Qﬂk)
<jk>-<j><k> is expected to be: JE
positive for assortative networks,
zero for neutral networks,
negative for dissasortative networks

To compare different networks, we should normalize it with its maximum value; the
maximum is reached for a perfectly assortative network, i.e. €;=q,0;

normalization: 67 =max Y jk(e % dq) = > jkq,8, —4,q,)

Jjk Jk
Z jk(e ., —q.q,) r<( disassortative
J J
_ _jk ~1<r<] r=0 neutral
' o F>(0 assortative

r

M. E. J. Newman, Phys. Rev. Lett. 89, 208701 (2002)



REAL NETWORKS

MNetwork n ¥
Physics coauthorship (a) 52909 (.363
Social networks Biology coauthorship (a) 1520251 0127
are assortative I'vllm]mmmin.:s ccmul:]mlﬁhip (b) 253339 0120
Film actor collaborations (c) 449913 (0.208
Company directors (d) 71673 0.276
Internet {e) 10697 —(. 189
World-Wide Web (T) 269 504 —0.063 Biological,
FProtein interactions (g) 2115 —(L 156 technological
Neural network I::h]I 307 —(L 163 networks are
Freshwater food web (j) 92 —0.276
Random graph (u) 0
Callaway et al. (v) af(l + 28)
Barabasi and Albert (w) 0
r>0: assortative network: r<0: disassortative network:

Hubs tend to connect to other hubs. Hubs tend to connect to small nodes.



RELATIONSHIP BETWEEN r AND k_, .4

o jey ’ (Y D ke, ke,

) %:k](&lj 94;) ) zk:quzj: 7. {Zk:quJ _zk:kkm(k)qk_ <k>2 kamd(k)zzk'P(k'|k)= ii:e _ K ;
g T o - o " S

In general case we need to know q, and k,,.,(k) to calculate r.

Assuming: k__(k)=a k+b

Using the constraint for ANND:

(K%)= (kppy (OK) =Y a Kp, +b- kp, = a{k*)+b(k) > b= ( _{'k)fk )

o

B 5, [a_ La- a)<k2>J o, (8
R R Al S I [

" o &
o BV ) )
{%" (k) <k>2J k' (k)

= =d

o




PROBLEM WITH THE PREVIOUS DEVIATION: k

(k) ~kP

ann
10
100 r
/\C Ac
v v
exponent: -.27+-0.03
10 N Ll N MR | N PR S S S 1 " N N PR S | N N L PR S S
1 10 100 1000 1 10 100
Kk k
Astrophysics co-authorship network Yeast PPI

Assortative Disassortative



CONNECTION WITH ANND

Assuming: k., (k)=a k”

. . . , %
Using the constraint for ANND: <k2> — (kmd(k)k> = ;a- k? lpk = a<kﬁ 1> —> a= (iﬂ%

Skoaitog E) s een (V) 7))

(k) _ k) (k) (W) R )

7 7 7
_ L)) () | ¥) ()
EAC ((kﬂ“> ) <k>J S -0~ g

<0 — r<0
=0 — r=0

>0 — r>0



CONNECTION BETWEEN R AND k,nnp

o ) ) )

CRRCECING

-
Ko <k£axzkapk:k£ax<ka>

<ka+ﬁ> _ Zkaﬂ?pk ::::
e >k£inzkapk:k£m<ka>

K,

i

0> B>—1: W) ["Lﬂn}ﬁ(kﬂ”> (k%)

" L (S




DEGREE CORRELATION IN NETWORKS

K
x10° k
—10
0.01
9
0.009
8 0.008
’ e (K —1
e 6 0.006 max max
'k 5€ 4 0.005 € _k _1
J E 5 max
4 0.004 2
3 0.003
2 0.002
1 0.001
o 0
10 T
k_(k 3 y k. —1
annd < < max
v
exponent: -.27+-0.03
10 : ; 1 :
1 10 100 1000 1 10 100



GENERATING NETWORK WITH GIVEN ASSORTATIVITY

We have a desired e distribution, which also specifies p,.

Generate a network with the desired degree distribution using the configuration model.

Choose two links at random from the network: (v,,w,) and (v,,w,).
Measure the degrees j,, ki, J,, k, of nodes v,, w,, v,, w,. Replace the two selected links

with two new ones (v,,v,) and (w,,w,) with probability

—

w N

e..e
Nz kky -
if e e <€ il

p =4 Cite s

1 otherwise

1. Repeat from step 2.

The algorithm is ergodic and satisfies detailed balance, therefore in the long
time limit it samples the desired network ensemble correctly.

M. E. J. Newman, Phys. Rev. E 67, 026126 (2003)



GENERATING NETWORK WITH GIVEN ASSORTATIVITY

2. Choose two edges random from the network: (v,,w,) and (v,,w,).
3. Measure the degrees j,, k4, j,, k, of vertices v,, w,, v,, w,. Replace the two selected
edges with two new ones (v4,v,) and (w,,w,) with probability

e. . e
Sz Tk, -

e o if e e <€wly;,

P =5 Jika Tk gy

1 otherwise




GENERATING NETWORK WITH GIVEN ASSORTATIVITY

If we only specify r we have great degree of freedom in choosing e,

Possible choice for disassortative case:

(d) . . . . . .
ey =4,X,+X.q, — XX, Where x, is any normalized distribution.

This form satisfies the constraints on ey

Qi =20, +xg, —xx, =1+1-1=1 Dn =D, H g, — XX, =g+ X — X, =4,

Jk Jk J J

The r value can be easily calculated:

) % JH(gx; +x,q, — %%, ~ 44, 20k, k), (R () _((k)x - (k>q)2

r

Assortative case: (a) _ () _
€ =449 €5 E—— v, =-r,

M. E. J. Newman, Phys. Rev. E 67, 026126 (2003)



EXAMPLE: Erd6s-Rényi

ER neutral ER assortative ER disassortative
k k k

10 15 20 25 10 15 20 25 5 10 15

20 25

0.035

0.03

o
[3,]

0.025
10 10
0.02
15

15 0.015

0.01

20 20

0.005

25 25




EXAMPLE: Erd6s-Rényi

ER
18 ' ' ' ' neutral °
assortative °
R disassortative °
16 i o © o ©® P
° . P ° °
[ ]
[ ]
[ J
14 | o o =
° [ ]
. 12 ° ° . .
[ ]
xE o ® W% %00 030000, ® . °
V o ° °
10 ° ° .
[ ]
[ J
8 | [} [ ] |
° ° ®
o o ° [ ]
° ® o © [ ] ° [ ] [} °
6 K
4 | | | |
0 5 10 15 20 25



Structural cut-off
High assortativity=> high number of links between the hubs.

If we allow only one link between two nodes, we can simply run out of hubs to connect
to each other to satisfy the assortativity criteria.

Number of edges between the set of

nodes with degree k and degree k” E,. =e. (k)N

Maximum number of edges between
the two groups:

mkk,:min{kN ,k’Nk,,Nka.}: If we only have simple edges, we
cannot have more links between the

> two groups, than if we connect every
There cannot be more links between the node with degree k to every node with
two groups, than the overall number of degree k’ once.

edges joining the nodes with degree k.

This is true even if we allow multiple edges.
M. Boguiia, R. Pastor-Satorras, A. Vespignani, EPJ B 38, 205 (2004)



Structural cut-off

E, =e. (k)N
- T ! o
my, =min{kN,,k'N,.,N,N,.} o
/1;(’ /,/’ k):k
The ratio of E,,,and m,,. has to be <1 in the
physical region! &
E _
Fo=—2%<1 = = rksksj
Mg s -
i kS
- ~
—> %, =1 defines the structural cut-off k

M. Boguiia, R. Pastor-Satorras, A. Vespignani, EPJ B 38, 205 (2004)



Structural cut-off for uncorrelated networks

Uncorrelated networks: e = quds k'Pkfk > Ty = Eye _ (k)
(k) My My
m,,, —mm{k]\fk,k’Nk ,Nka} —

K (KN-K-p,  kp,
My, =N, SRRl IR CE R
m R - <k>N k2 pk B _ jA
e, =Ny @ Kk, — (k) @ <k>N —> kS(N)—(<k>N)

k.(N) represents a structural cutoff:
one cannot have nodes with degree larger than k,(N),

—if there are nodes with k> k(N) we cannot find sufficient links between the highly
connected nodes to maintain the neutral nature of the network.

Solution:
(a) Introduce a structural cutoff (i.e. do not allow nodes with k> k(N)
(b) Let the network become more dissasortative, having fewer links between hubs.



Example: Degree sequence introduces disassortativity

Scale-free network generated with the
configuration model (N=300, L=450, y=2.2).

The measured r=-0.19! = Dissasortative!

Red hub: 55 neighbors.
Blue hub: 46 neighbors.

Let’s calculate the expectation number of
links between red node (k=55) and blue
node (k=46) for uncorrelated networks!

y 4 k
Here N;=N,=1, hence L L ‘t Pr
Ms5.46=1 SO I'55.46=E 55 46 ~ 55 1 46 1 P

E 6 = (E)N- €4 s =900. —390 300 5 g 5

2

/ In order for the network to be neutral, we
<k> need 2.8 links between these two hubs.



1-CDF

0.1 |
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0.001

1 10
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Pk

The effect is particularly clear for N=10,000:

1 T T
natural cut-off °
e structural cut-off °

0.01

0.001

0.0001

1e-05

1e-06

1 10 100 1000

The red curves are those of interest to us: one can see that a clear dissasortativity

property is visible in this case.

30

ﬁatu ral (':ut-off '

structural cut-off

50

100

150 200

250

300



Natural cutoffs in scale-free networks

All real networks are finite =2 let us explore its consequences.
—> We have an expected maximum degree, K__

Estimating K,
T 1 Why: the probability to have a node larger than K, should not
P(k)dk ~ } exceed the prob. to have one node, i.e. 1/N fraction of all nodes
KI[IBX
o 7_
T P(k)dk — (},_ I)Kf;i T kK 7dk = (7 1) Ky—l[ —y+l] Km_nll ~ 1
K K (—7+D Koo Ko N

1

Natural cutoff: K _—K_ N7



Structural cut-off for uncorrelated networks

7
Structural cutoff: (£ (V) ~ ((k)N)}é € = hdr = %

1

Natural cut-off:  k__ (N)~ N7

v=3: k(N) and k__ (N) scale the same way, i.e. "N/2,

The size of the largest hub is above the
structural cutoff, which means that it cannot
have enough links to the other hubs to
maintain its neutral status.

- disassortative mixing

v<3: k >k —

max 5

—>a randomly wired network with y<3 will be
(a) dissasortative
(b) Or will have to have a cutoff at k,(N)< k... (N)



Example: introducing a structural cut-off

Scale-free network generated with the
configuration model (N=300, L=450, y=2.2) with
structural cut-off ~ N”.

r=0.005 - neutral

Red hub: 12 neighbors.
Blue hubs: 11 neighbors.

Again we can calculate the expectation
number of edges between the hubs.

‘ P k'

x \t Pr
k
™ g 24

E,, ={k)N-e,,, =900. —30 300 . 43 4

27
(k)



1-CDF

10

8_
. 6
° A ® o ® o e
o N O‘o.. ®
v 4r
0.01 | ¢
o] 27
0.001 ‘ - 0 I
1 10 0 2 4 6 8 10
’ k

k
1—CDF =P(k' > k) =1—.p,.
X The largest nodes have k, ~ <k >
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The effect is particularly clear for N=10,000:
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10°

10'

A clear case of neutral assortativity property is visible in this case thanks to
imposing structural cut-off.
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