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The BA model is only a minimal model.
Makes the simplest assumptions:
• linear growth
• linear preferential attachment

Does not capture
 variations in the shape of the degree distribution
 variations in the degree  exponent
 the size-independent clustering coefficient

Hypothesis: 
The BA model can be adapted to describe most features of real networks. 

We need to incorporate mechanisms that are known to take place in real 
networks: addition of links without new nodes, link rewiring,  link removal; 
node removal, constraints or optimization
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EVOLVING NETWORK MODELS
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(the simplest way to change the degree exponent) 
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Undirected BA network:

Directed BA network:

β=1: dynamical exponent γin=2: degree exponent; P(kout)=δ(kout-m)
Undirected BA:    β=1/2;           γ=3 

BA ALGORITHM WITH DIRECTED EDGES
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Extended Model

• prob. p : internal links
• prob. q : link deletion
• prob. 1-p-q : add node

EXTENDED MODEL: Other ways to change the exponent

P(k) ~ (k+κ(p,q,m))-γ(p,q,m) 
     γ ∈ [1,∞)
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P(k) ~ (k+κ(p,q,m))-γ(p,q,m)      γ ∈ [1,∞) Extended Model

p=0.937
m=1
κ = 
31.68
γ = 3.07

Actor network

• prob. p : internal links
• prob. q : link deletion
• prob. 1-p-q : add node

Predicts a small-k cutoff
a correct model should predict all aspects of the 
degree distribution, not only the degree exponent.
Degree exponent is a continuous function of p,q, m

EXTENDED MODEL: Small-k cutoff
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• Non-linear preferential attachment:  

  

  → P(k) does not follow a power law for α≠1

  

   ⇒ α<1 : stretch-exponential

   ⇒ α>1 : no-scaling (α>2 : “gelation”)
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P. Krapivsky, S. Redner, F. Leyvraz, Phys. Rev. Lett. 85, 4629 (2000)
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NONLINEAR PREFERENTIAL ATTACHMENT: MORE MODELS
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Initial attractiveness shifts the degree exponent:

A - initial attractiveness

m
A2in +=γ

1  ,)( ≤+≈Π ααkAk

Dorogovtsev, Mendes, Samukhin, Phys. Rev. Lett. 85, 4633 (2000)

BA model: k=0 nodes cannot aquire links, as Π(k=0)=0
(the probability that a new node will attach to it is zero)

Note: the parameter A can be measured from real data, being the rate at which 
k=0 nodes acquire links, i.e. Π(k=0)=A

INITIAL ATTRACTIVENESS
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• Finite lifetime to acquire new edges

• Gradual aging: 

νγ   withincreases 

S. N. Dorogovtsev and J. F. F. Mendes, Phys. Rev. E 62, 1842 (2000) 

L. A. N. Amaral et al., PNAS 97, 11149 (2000)

GROWTH CONSTRAINTS AND AGING CAUSE CUTOFFS
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P(k)  ~ k-γ

Pathlenght Clustering Degree Distr.
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THE LAST PROBLEM: HIGH, SYSTEM-SIZE INDEPENDENT C(N)

Regular 
network

Erdos-
Renyi

Watts-
Strogatz

Barabasi-
Albert Network Science: Evolving Network Models 

P(k)=δ(k-kd)



• Each node of the network can be either active or inactive.
• There are m active nodes in the network in any moment.
1. Start with m active, completely connected nodes.
2. Each timestep add a new node (active) that connects to m active nodes.
3. Deactivate one active node with probability:

K. Klemm and V. Eguiluz, Phys. Rev. E 65, 036123 (2002)
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C C* when N∞

A MODEL WITH HIGH CLUSTERING COEFFICIENT
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The network grows,  but the degree distribution is stationary.

Section 11: Summary
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1.  There is no universal exponent characterizing all networks.

2. Growth and preferential attachment are responsible for the emergence 
of the scale-free property.

3. The origins of the preferential attachment is system-dependent.
4.  Modeling real networks:

•  identify the microscopic processes that take place in the 
system

•  measure their frequency from real data
•  develop dynamical models that capture these 
       processes.  

5. If the model is correct, it should correctly predict not only the degree 
exponent, but both small and large k-cutoffs.

LESSONS LEARNED: evolving network models
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Philosophical change in network modeling:

ER, WS models are static models – the role of the network modeler it to 
cleverly place the links between a fixed number of nodes to that the 
network topology mimic the networks seen in real systems.

BA and evolving network models are dynamical models: they aim to 
reproduce how the network was built and evolved. 

Thus their goal is to capture the network dynamics, not the structure. 
  as a byproduct, you get the topology correctly

LESSONS LEARNED: evolving network models

Network Science: Evolving Network Models 



Philosophical change in network modeling:

ER, WS models are static models – the role of the network modeler it to 
cleverly place the links between a fixed number of nodes to that the 
network topology mimic the networks seen in real systems.

BA and evolving network models are dynamical models: they aim to 
reproduce how the network was built and evolved. 

Thus their goal is to capture the network dynamics, not the structure. 
  as a byproduct, you get the topology correctly

LESSONS LEARNED: evolving network models

Network Science: Evolving Network Models 



DEGREE CORRELATIONS IN NETWORKS

Assortative:
hubs show a tendency to 
link to each other.

Neutral: 
nodes connect to each 
other with the expected 
random probabilities.

Disassortative: 
Hubs tend to avoid 
linking to each other.

Quantifying degree correlations (three approaches):
   full statistical description (Maslov and Sneppen, Science 2001)
   degree correlation function (Pastor Satorras and Vespignani, PRL 2001)
   correlation coefficient (Newman, PRL 2002)

Network Science: Degree Correlations 



STATISTICAL DESCRIPTION
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ejk: probability to find a node with degree j and degree k at the two ends of a randomly 
selected edge

qk: the probability to have a degree k node at the end of a link.

If the network has no  
degree correlations:

Where:

M. E. J. Newman, Phys. Rev. Lett. 89, 208701 (2002)

Probability to find a node at the end of a link is biased towards the more connected 
nodes, i.e.  qk=Ckpk, where C is a normalization constant . After normalization we 
find C=1/<k>, or qk=kpk/<k>

Deviations from this prediction are a 
signature of degree correlation.



EXAMPLE: ejk  FOR A SCALE-FREE NETWORK
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Disassortative:
Hubs tend to 
connect to small 
nodes.

Neutral

Each matrix is the average of a 100 independent scale-free networks, 
generated using the static model with N=104, γ=2.5 and <k>=3.

Assortative:
More strength in 
the diagonal,  
hubs tend to link 
to each other.



EXAMPLE: ejk  FOR A SCALE-FREE NETWORK
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Disassortative:
Hubs tend to 
connect to small 
nodes.

Each matrix is the average of a 100 independent scale-free networks, 
generated using the static model with N=104, γ=2.5 and <k>=3.

Assortative:
More strength in 
the diagonal,  
hubs tend to link 
to each other.

Perfectly assortative 
network:

 ejk=qkδjk 

Perfectly 
disassortative 
network:



REAL-WORLD EXAMPLES
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Astrophysics co-authorship network Yeast PPI

Assortative:
More strength in 
the diagonal,  
hubs tend to 
link to each 
other.

Disassortative:
Hubs tend to 
connect to small 
nodes.



PROBLEM WITH THE FULL STATISTICAL DESCRIPTION

Network Science: Degree Correlations M. E. J. Newman, Phys. Rev. Lett. 89, 208701 (2002)

Undirected network:  
 kmax x kmax  matrix           

Nr. of 
independent 
elements

Constraints

(2) Based on ejk and hence requires a large 
number of elements to inspect: 

(1) Difficult to extract 
information from a visual 
inspection of a matrix.

We need to find a way to reduce the information contained in ejk 



Average next neighbor degree

Network Science: Degree Correlations 
R. Pastor-Satorras, A. Vázquez, A. Vespignani, Phys. Rev. E 65, 066130 (2001)

If there are no degree correlations, kannd(k) is independent of k.

No degree 
correlations:

kannd (k): average degree of the first 
neighbors of nodes with degree k.



kannd(k) FOR REAL NETWORKS 
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Astrophysics co-authorship network Yeast PPI

Assortative Disassortative
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Average next neighbor degree

R. Pastor-Satorras, A. Vázquez, A. Vespignani, Phys. Rev. E 65, 066130 (2001)

constraint:
kmax-1 independent

elements

kannd(k): average degree of the first 
neighbors of nodes with degree k.

kannd(k) is a k-dependent function, hence it has much fewer parameters,

and it is easier to interpret/read.



PEARSON CORRELATION

Network Science: Degree Correlations M. E. J. Newman, Phys. Rev. Lett. 89, 208701 (2002)

normalization:

If there are degree correlations, ejk will differ from qjqk. The magnitude of the correlation is 
captured by <jk>-<j><k> difference, which is: 

<jk>-<j><k> is expected to be: 
 positive for assortative networks, 
 zero for neutral networks,
 negative for dissasortative networks 

To compare different networks, we should normalize it with its maximum value; the 
maximum is reached for a perfectly assortative network, i.e. ejk=qkδjk 

disassortative
neutral
assortative



REAL NETWORKS
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r>0: assortative network:
Hubs tend to connect to other hubs.

r<0: disassortative network:
Hubs tend to connect to small nodes.

Social networks 
are assortative

Biological, 
technological 
networks are 
disassortative



RELATIONSHIP BETWEEN r AND kannd
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Assuming: 

Using the constraint for ANND:

In general case we need to know qk and kannd(k) to calculate r.



PROBLEM WITH THE PREVIOUS DEVIATION: kannd(k)~kβ
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Astrophysics co-authorship network Yeast PPI

Assortative Disassortative
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CONNECTION WITH ANND

Assuming: 

Using the constraint for ANND:
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CONNECTION BETWEEN R AND kANND



DEGREE CORRELATION IN NETWORKS
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0.31 -0.16



GENERATING NETWORK WITH GIVEN ASSORTATIVITY
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M. E. J. Newman, Phys. Rev. E 67, 026126 (2003)

1. Generate a network with the desired degree distribution using the configuration model.
2. Choose two links at random from the network: (v1,w1) and (v2,w2).
3. Measure the degrees j1, k1, j2, k2 of nodes v1, w1, v2, w2. Replace the two selected links 

with two new ones (v1,v2) and (w1,w2) with probability

1. Repeat from step 2.

We have a desired ejk distribution, which also specifies pk.

The algorithm is ergodic and satisfies detailed balance, therefore in the long 
time limit it samples the desired network ensemble correctly. 
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GENERATING NETWORK WITH GIVEN ASSORTATIVITY

2. Choose two edges random from the network: (v1,w1) and (v2,w2).
3. Measure the degrees j1, k1, j2, k2 of vertices v1, w1, v2, w2. Replace the two selected 

edges with two new ones (v1,v2) and (w1,w2) with probability

1 2 3 4



GENERATING NETWORK WITH GIVEN ASSORTATIVITY

Network Science: Degree Correlations 
M. E. J. Newman, Phys. Rev. E 67, 026126 (2003)

If we only specify r we have great degree of freedom in choosing ejk.

Possible choice for disassortative case:

Where xk is any normalized distribution.

Assortative case:

This form satisfies the constraints on ejk:

The r value can be easily calculated:



EXAMPLE: Erdős-Rényi
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e
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EXAMPLE: Erdős-Rényi



Structural cut-off

Number of edges between the set of
nodes with degree k and degree k’:

Maximum number of edges between
the two groups:

M. Boguñá, R. Pastor-Satorras, A. Vespignani, EPJ B 38, 205 (2004)

High assortativity high number of links between the hubs.

If we allow only one link between two nodes, we can simply run out of hubs to connect 
to each other to satisfy the assortativity criteria. 

There cannot be more links between the 
two groups, than the overall number of 
edges joining the nodes with degree k.

This is true even if  we allow multiple edges.

If we only have simple edges, we 
cannot have more links between the 
two groups, than if we connect every 
node with degree k to every node with 
degree k’ once.



Structural cut-off

The ratio of Ekk’ and mkk’ has to be ≤ 1 in the 
physical region!

defines the structural cut-off

M. Boguñá, R. Pastor-Satorras, A. Vespignani, EPJ B 38, 205 (2004)



Structural cut-off for uncorrelated networks
Uncorrelated networks:

ks(N) represents a structural cutoff:  
one cannot have nodes with degree larger than ks(N) , 

 if there are nodes with  k> ks(N)  we cannot find sufficient links between the highly 
connected nodes to maintain the neutral nature of the network.

Solution:
(a) Introduce a structural cutoff (i.e. do not allow nodes with k> ks(N) 
(b) Let  the network become more dissasortative, having fewer links between hubs.
 



Example: Degree sequence introduces disassortativity

Scale-free network generated with the 
configuration model (N=300, L=450, γ=2.2).

Red hub: 55 neighbors.
Blue hub: 46 neighbors. 

Let’s calculate the expectation number of 
links between red node (k=55) and blue 
node (k=46) for uncorrelated networks!

The measured r=-0.19!  Dissasortative!

In order for the network to be neutral, we 
need 2.8 links between these two hubs.

Here N55=N46=1, hence
m55,46=1 so r55,46=E55,46



The largest nodes have knn< <knn>
<k

nn
>



The effect is particularly clear for N=10,000:

The red curves are those of interest to us: one can see that a clear dissasortativity 
property is visible in this case.

<k
nn

>



Natural cutoffs in scale-free networks
All real networks are finite  let us explore its consequences. 
 We have an expected maximum degree, Kmax

Estimating Kmax 

Why: the probability to have a node larger than Kmax should not 
exceed the prob. to have one node, i.e. 1/N fraction of all nodes 

Natural cutoff: 



Structural cut-off for uncorrelated networks

Natural cut-off:

The size of the largest hub is above the 
structural cutoff, which means that it cannot 
have enough links to the other hubs to 
maintain its neutral status.
 disassortative mixing

a randomly wired network with γ<3 will be 
(a) dissasortative
(b) Or will have to have a cutoff at ks(N)< kmax(N)  

Structural cutoff:

γ=3:  ks(N) and kmax(N) scale the same way, i.e. ~N1/2.

γ<3: 



Example: introducing a structural cut-off

Scale-free network generated with the 
configuration model (N=300, L=450, γ=2.2) with 
structural cut-off ~ N½.

Red hub:  12 neighbors.
Blue hubs: 11 neighbors. 

Again we can calculate the expectation 
number of edges between the hubs.

r=0.005   neutral



The largest nodes have knn~ <knn>
<k

nn
>



The effect is particularly clear for N=10,000:

A clear case of neutral assortativity property is visible in this case thanks to 
imposing structural cut-off.
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